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Abstract—Mobile apps are now ubiquitous. Before developing
a new app, the development team usually endeavors painstaking
efforts to review many existing apps with similar purposes. The
review process is crucial in the sense that it reduces market
risks and provides inspiration for app development. However,

Layout Code

manual exploration of hundreds of existing apps by different _. Activity Code
roles (e.g., product manager, UI/UX designer, developer) in a —
development team can be ineffective. For example, it is difficult Registation i

to completely explore all the functionalities of the app in a short P

period of time. Inspired by the conception of storyboard in movie Mothod Hierarchy

production, we propose a system, StoryDroid, to automatically
generate the storyboard for Android apps, and assist different
roles to review apps efficiently. Specifically, StoryDroid extracts
the activity transition graph and leverages static analysis tech-
niques to render UI pages to visualize the storyboard with the
rendered pages. The mapping relations between UI pages and the
corresponding implementation code (e.g., layout code, activity
code, and method hierarchy) are also provided to users. Our
comprehensive experiments unveil that StoryDroid is effective
and indeed useful to assist app development. The outputs of
StoryDroid enable several potential applications, such as the
recommendation of Ul design and layout code.

Index Terms—Android app, Storyboard, Competitive analysis,
App review

I. INTRODUCTION

Mobile apps now have become the most popular way of
accessing the Internet as well as performing daily tasks, e.g.,
reading, shopping, banking and chatting [23]. Different from
traditional desktop applications, mobile apps are typically
developed under the time-to-market pressure and facing fierce
competitions — over 3.8 million Android apps and 2 million
iPhone apps are striving to gain users on Google Play and
Apple App Store, the two primary mobile app markets [24].

Therefore, for app developers and companies, it is cru-
cial to perform extensive competitive analysis over existing
apps with similar purposes [11, 34, 54, 55]. This analysis
helps understand the competitors’ strengths and weaknesses,
and reduces market risks before development. Specifically, it
identifies common app features, design choices, and potential
customers. Moreover, researching similar apps also helps
developers gain more insight on the actual implementation,
given that delivering commercial apps can be time-consuming
and expensive [18].

Typically, to achieve the aforementioned analysis, a free-
lance developer or a product manager (PM) in a tech com-
pany has to download the apps from markets, install them
on mobile devices, and use them back-and-forth to identify
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Fig. 1: The storyboard diagram of an Android app

what she is interested in [11, 34, 54, 55]. However, such
manual exploration can be painstaking and ineffective. For
example, if a tech company plans to develop a social media
app, 245 similar apps on Google Play will be under review.
It is overwhelming to manually analyze them — register
accounts, feed specific inputs if required, and record necessary
information (e.g., what are the main features, how are the app
pages connected). Additionally, commercial apps can be too
complex to manually uncover all functionalities in a reasonable
time [36]. For UI/UX designers, the same exploration problem
still remains when they want to get inspiration from similar
apps’ design. In addition, the large number of user interface
(UD) screens within the app also makes it difficult for designers
to understand the relation and navigation between pages. For
developers who want to get inspiration from similar apps,
it is difficult to link the UI screens with the corresponding
implementation code — the code can be separated in static
layout files as well as a large piece of functional code.
Inspired by the conception of storyboard' in movie indus-
try [53], we intend to generate the storyboard of an app to
visualize its key app behaviors. Specifically, we use activities
(i.e., Ul screens) to characterize the “scenes” in the storyboard,
since activities represent the intuitive impression of the apps
in a full-screen window and are the most frequently used com-
ponents for user interactions [6]. Fig. 1 shows the storyboard
diagram of Facebook (one of most popular social media apps),

l“Storyboard” was developed at Walt Disney Productions, including a se-
quence of drawings typically with some directions and dialogues, representing
the shots planned for a movie or television production.
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which includes the activity transition graph (ATG) with UI
pages, the detailed layout code (e.g., static and dynamic), the
functional code of each activity (Activity Code), and method
call relations within each activity (Method Hierarchy). Based
on this storyboard, PMs can review a number of apps in a
short period of time and propose more competitive features in
their own app.? UI designers can obtain the most related UI
pages for reference. And developers can directly refer to the
related code to improve development efficiency.

However, generating the storyboard is challenging. First,
ATGs are usually incomplete due to the limitation of static
analysis tools [36, 62]. Second, to identify all UI pages, a
pure static approach may miss parts of Uls that are dynam-
ically rendered (see Section III), whereas a pure dynamic
approach [17, 40, 41, 66, 67] may not be able to reach all
pages in the app, especially those requiring login. Third, the
obfuscated activity names lack the semantics of corresponding
functionalities, making the storyboard hard to understand.

To overcome these challenges, we propose a system, STO-
RYDROID, to automatically generate the storyboard of apps in
three main phases: (1) Activity transition extraction, which
extracts ATG from the apks, especially the transitions in
fragments [7] (components of activities) and inner classes [19],
making ATG more complete. (2) Ul page rendering, which
first extracts the dynamic components (if any) for each Ul
page and embeds them into the corresponding static layout. It
then renders each UI page statically based on the static layout
files. (3) Semantic name inferring, which infers the semantic
names for the obfuscated activity names by comparing the
layout hierarchy with the ones in our database which is con-
structed from 4,426 open source apps. Through these analyses,
STORYDROID provides a systematic solution for exploring and
understanding an app from different points of view.

We evaluate STorRYDROID on 100 apps (50 open-source and
50 closed-source apps) from the following two aspects: (1) ef-
fectiveness evaluation of each phase; (2) usefulness evaluation
of the visualization outputs. The experimental results show
the effectiveness of STORYDROID in extracting activity transi-
tions, especially in fragments and inner classes. STORYDROID
extracts nearly 2 times more activity transitions than the state-
of-the-art ATG extraction tool (i.e., IC3 [62]) on both open-
source apps and closed-source apps. Besides, STORYDROID
significantly outperforms the state-of-the-art dynamic testing
tool (i.e., STOAT [67]) on activity coverage for both open-
source apps (87% on average) and closed-source apps (74% on
average). On average, our rendered images achieve 84% sim-
ilarity compared with the ones that are dynamically obtained
by Stoar. And STORYDROID can infer the semantic names
at a high accuracy (92%). In addition, the user study shows
that with the help of STorRYDROID, the activity coverage has a
significant improvement compared with exploration without
STORYDROID, and users can find the layout code for the
given Ul pages more accurately and efficiently. Apart from

2The main target is to help PMs, developers, designers understand and get
inspiration from existing apps, instead of directly distributing any part of the
code for developing apps for commercial purpose.
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the fundamental usefulness, we also discuss several additional
practical applications based on the outputs of STORYDROID,
such as the recommendation of UI design and layout code
and guiding app regression testing.

In summary, we make the following contributions:

This is the first research work to automatically generate
the storyboard of Android apps. It assists app development
teams including PMs, designers, and developers to quickly
have a clear overview of other similar apps.

We propose a novel algorithm to extract relatively complete
ATG, render UI pages statically, and infer activity names for
obfuscated apps. These technical contributions are general
for both open-source and close-source Android apps.

Our experiments demonstrate not only the accuracy of
the generated storyboard, but also the usefulness of our
storyboard for assisting app development.

This is a fundamental work to enable the construction of
a large-scale database of app storyboards, as the over-
all approach is based on static program analysis. Such a
database can expand the horizon of current mobile app
research by enabling lots of future work such as extracting
commonalities across apps, recommending UI code, design,
and guiding app testing.

II. MOTIVATING SCENARIO

We detail the typical app review process [4, 22, 34, 54, 55]
with our STORYDROID for Android apps in term of different
roles in the development team. Eve is a PM of an IT company.
Her team plans to develop an Android social app. In order to
improve the competitiveness of the designed app, she searches
hundreds of similar apps (e.g., Facebook, Instagram, Twitter)
based on the input keywords (e.g., social, chat) from Google
Play Store. She then inputs all of the URLs of these apps into
STorYDROID which automatically download all of these apps
with Google Play API [2]. STorYDROID further generates the
storyboard (e.g., Fig 1) of all these apps and displays them to
Eve for an overview. By observing these storyboards together,
she easily understands the storyline of these apps, and spots
the common features among these apps such as registering,
searching, setting, user profile, posting, etc. Based on these
common features, Eve comes up with some unique features
which can distinguish their own app from existing ones.

Alice, as a UI/UX designer, needs to design the Ul pages
according to Eve’s requirements. With our STORYDROID, she
can easily get not only a clear overview of the UI design style
of related apps, but also interaction relations among different
screens within the app. Then, Alice can develop the UI and
user interaction of her app inspired by others’ apps [16, 32].

Bob is an Android developer who needs to develop the
corresponding app based on Alice’s Ul design. Based on
Alice’s referred Ul design in the existing app, he can also
refer to that app with the help of our STorRYDROID. By clicking
the Ul screen of each activity in the storyboard, STORYDROID
returns the corresponding Ul implementation code no matter it
is implemented with pure static code, dynamic code, or hybrid
ones. To implement their own UI design, he can refer to the
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// Static Layout ]
<TextView i
android:id="“@+id/text” ]
android:text=“Password”> 3
</TextView> i

Upload my address book to connect me
with my friends.

i
Relativelayout r = new Relativelayout(); i
TextView tv = new TextView(); i
1 10 tv.setText(“Password”); :
3 11 r.addView(tv); ;

[ 137//7 Hybrid LTayout —~~ T TTTTTTTTTTTTTTTTTA
114 // main_act refers to a static XML file
3 15 LayoutInflater 1i = LayoutInflater.form();:

1 16 View view = li.inflate(R.layout.main_act);}

Fig. 2: Three types of GUI layout

implemented code and customize it based on their requirement.
That development process is much faster than starting from
scratch. In addition, Bob may also be interested in certain
functionality within a certain app. By using STORYDROID, he
easily locates the logic code.

III. PRELIMINARIES

In this section, we briefly introduce the concepts of Android
UI, layout types of UI and special views for populating data.

A. Android Activity and Fragment

There are four types of components in Android apps (i.e.,
Activity, Service, Broadcast, Receiver). Specifically,
Activity [6] and Fragment [7] render the user interface
and are the visible parts of Android apps. Activity is a
fundamental component for drawing the screens which users
can interact with. Fragment represents a portion of Uls in the
activities, which contributes their own UI to certain activities.
Fragment always depends on an Activity and cannot exist
independently. A Fragment can also be reused in multiple
activities and an activity may contain multiple fragments based
on the screen size, with which we can create multi-panel Uls
to adapt to mobile devices with different screen sizes.

B. UI Layout

A user interface, rendered by Activity and Fragment,
requires a Ul layout to draw a window for users. We take a
high-level look at three layout types in Android apps. Fig. 2
shows the login UI page of a famous social app, Twitter [31],
where the component (e.g., TextView) can be implemented
in three different layout types.

Static layout, which relies on the static layout files (i.e., XML)
in the apk. The UI pages of the app are rendered by these XML
files. ViewGroup and View are the basic elements of user
interfaces in UI layout files. ViewGroup is a container which
holds other viewGroups and Views. The GUI code must
contain a root node with ViewGroup (e.g., RelativeLayout
and LinearLayout). When the ViewGroup is defined, devel-
opers can add additional Views (e.g., EditText, TextView)
as children elements to gradually build a hierarchy that defines
the page layout. GUI components contain multiply attributes
(e.g., id, text, width) as shown in Fig. 2 (lines 2-5).

Dynamic layout, which allows developers to instantiate layout
components at runtime using Android API (i.e., addview ()).
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1 public class PartList extends Activity{

2 ListView lv = (ListView) findViewByld(R.id.list);
3 ArrayAdapter adapter = new

ArrayAdapter (this ,R.layout.list_view ,data);
4 lv.setAdapter (adapter);

Fig. 3: Simplified code snippet of Adapter

SearchPanel)Use Inner Class

SearchBy
PartName,

Activity

(b) Transitions with Inner Class

PrefEditor
Advanced
Start|Fragment PrefEditor.
PrefEditor
Fragment

Start Activity
(a) Transitions with Fragment

Fig. 4: Transitions between activities and fragment, inner class

Developers can create components and manipulate their at-
tributes in Java code, e.g., TextView.setText(“Password”) in
Java code is equivalent to android:text="Password” in layout
file as shown in Fig. 2 (lines 7-11).

Hybrid layout, which defines some default components in
static layout files. These layout can be reused dynamically by
invoking LayoutInflater.inflate as shown in Figure 2
(lines 14-15). Developers can also manipulate the attributes
of the defined components. For example, they can modify the
content of TextView in Java code.

To investigate the proportion of dynamic and hybrid layout
used in Android apps, we randomly select 1,000 apps from the
top 10,000 Google Play apps with the most number of down-
loads. We use the specific Android APIs (i.e., addview () and
inflate ()) to distinguish if the app contains dynamic/hybrid
layout types to draw the UI pages. The result of our study
unveils that 62.3% apps use dynamic/hybrid layout. The reason
for such frequent usage of dynamic/hybrid layout is that with
the help of them, the views are separated from the view model
in the XML file, developers can change the layout without
recompiling to adapt to the app’s runtime state.

C. Data Population

Adapter [5] is a bridge between the Adapterview and the
underlying data for the view. It also provides the layout (e.g.,
ListView, GridvView, ViewPager) with the data, which
is usually loaded from a local database or remote server.
Adapter enables these Ul components (e.g., ListView) to
provide a list of scrollable items for the selection purpose.
Fig. 3 shows an example of Adapter. It instantiates an
adapter with a layout (ListView) and associates it with data.
The data is then displayed in a ListView via adapter. The
AdapterView is part of the user interface layout and should
be extracted from the source code for static rendering.

IV. OUR APPROACH

STorRYDROID takes an apk as input and outputs the visu-
alized storyboard (S) for the app. Fig. 5 shows the three
main phases of STORYDROID: (1) Transition Extraction, which
enhances the ATG extraction ability of IC3 [62], especially for
fragments and inner classes. STORYDROID leverages control-
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Fig. 5: Architecture of STORYDROID

public class PrefEditor {... //Using replace/add
PrefEditorFragment pref new PrefEditorFragment();
FragmentTransaction.replace (R.id.content , pref);
FragmentTransaction.commit(); }

public class PrefEditor {... // Using setAdapter
ViewPager.setAdapter (getSupFragmentManager () ,
new PrefEditorFragment()); }

R R N IR

Fig. 6: Simplified code snippet of Fragment

public class SearchPanel {...

private class SearchByPartName extends Asynctack <>{...
Intent intent new Intent

(MainActivity . this , PartList.class);
startActivity (intent); } }

woE W =

Fig. 7: Simplified code snippet of Inner Class

and data-flow analysis to obtain relatively complete ATG.
(2) UI Page Rendering, which translates dynamic and hybrid
layout to static layout (if needed) to render Ul pages that users
interact with. (3) Semantic Name Inferring, which infers the
semantic name for the obfuscated activity names by layout
comparison.

A. Transition Extraction

Before extracting activity transitions in inner classes and
fragments, we illustrate the transitions in them. Fig. 4 (a)
is the sub ATG of vespucci [33], a map editor. Firstly,
activity Main starts PrefEditor, in which PrefEditorFragment
is started. And PrefEditorFragment further starts Advanced-
PrefEditor. Specifically, as shown in Fig. 6, fragments can be
added to an activity in two ways: (1) by invoking fragment
modification API calls, e.g., “replace (),” “add(),” and fur-
ther leveraging “FragmentTransation.commit () (lines 3-
4) to start the fragment; (2) By using “setaAdapter” (line 6)
to display the fragment in a certain view (e.g., ViewPager).
The started PrefEditorFragment then starts a new activity
(i.e., AdvancedPrefEditor). Fig. 4 (b) shows the sub ATG of
ADSdroid, where SearchPanel uses an inner class SearchBy-
PartName to handle time-consuming operations as shown in
Fig. 7. After finishing the task, it starts an activity PartList
by invoking “StartActivity ()” (line 5). In this example,
our goal is to extract activity transitions: Main—PreEditor,
PreEditor—AdvancedPreEditor, and SearchPanel—PartList.

Algorithm 1 details the extraction of ATG and resources
for rendering, including the layout type (i.e., static, dynamic,
or hybrid) and the adapter mapping relations. Specifically,
it takes as input an apk, and outputs the activity transition
graph (atg), adapter mappings (adapters), and layout type
(layout_type). We first initialize atg as an empty set (line
1), which stores the activity transitions gradually. We then
generate the call graph (cg) of the given apk, obtain the layout
type by analyzing the existence of dynamic layout loading
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Algorithm 1: ATG and Rendering Source Extraction

Input: apk
Output: atg: Activity transition graph, adapters: Adapter mappings,
layout_type: i.e., static, dynamic or hybrid

atg < 0, adapters + 0

cg < getCallGraph(apk)

layout_type < getLayoutType(apk)

all_classes < getAllClasses(apk)

foreach ¢ € all_classes do

methods < getClassMethods(c)

foreach m € methods do

if hasActivityTransition(m) then

callee_act <+ getTargetAct(m)

if isInnerClass(c) then
caller_act < outerClass(c)
atg.addPair(caller_act, callee_act)

else if isinFragment(m) then

L atg.addPair(caller_frag, callee_act)

else
caller_acts < getCallerAct(m, cg)
foreach act € caller_act do
L atg.addPair(act, callee_act)
/l get rendering sources and optimize atg
if startFragment(m) then
caller_acts < getCallerAct(caller_frag)
foreach act € caller_acts do
L atg.addPair(act, callee_frag)

| updateATGIfNeeded(atg)

/I get rendering sources

if hasAdapter(m) then

/l e.g., ListView, RecyclerView, ViewPager
view_type <— getViewType(m)

layout_file < BackwardAnalysis(m)
adapters.add(c, view_type, layout_file)

24

25
26
27

28 return atg, adapters, layout_type

APIs (lines 2-3). For each method (m) in each class (c),
if there exists an activity transition, we first get the target
activity (callee_act) by analyzing the data in Intent (lines
5-9). If the method (m) is in an inner class, we regard the
outer class as the activity that starts the target activity and
add the transition to atg (lines 10-12). Take Fig. 4 (b) as
an example, we add an edge SearchPanel—PartList to atg.
If m is in a fragment, we construct the relation between the
fragment (caller_frag) and the target activity (lines 13-14).
Note that this relation does not represent the actual activity
transition, we optimize it by identifying the activities that start
the fragment in lines 19-22. This relation is used for both
ATG construction and UI page rendering. After that we update
atg by merging fragment relations to construct the actual
activity transitions (line 23). For example, in Fig. 4 (a), we first
obtain the relations PrefEditorFragment— AdvancedPreEditor,
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PrefEditor—PrefEditorFragment, then we merge it to PrefEd-
itor—AdvancedPreEditor to represent the actual activity tran-
sition. For method m that is neither in an inner class nor a
fragment, we backward traverse cg starting from m to obtain
all the activities that start the target activity (callee_act), then
add them to atg (lines 15-18).

In addition, to complement the UI layout that need to
load data from data providers (e.g., ContentProvider,
Preference) using different types of views (e.g., ListView,
RecyclerView, ViewPager), we first identify the method
that uses Adapter and obtain the correponding view type
(view_type) (lines 24-25). We then utilize backward data-
flow analysis on the adapters to track the corresponding layout
files, which pinpoints the layout/activity that will be embedded
with data displayed in view_type. We define each mapping
relation as a tuple (activity,view_type,layout) and save them
in adatpers for Ul rendering. Take Fig. 3 as an example, we
denote the relation as (PartList,ListView,list_view).

B. UI Page Rendering

We propose to statically render the Ul pages due to the
limitation of data dependence between different activities
when using dynamic tools for UI page rendering (e.g., require
login or special input to reach another activity). The activities
we rendered are the initial state of each activity. As for apps
that only use static layout to display UI pages, we can directly
extract the corresponding layout file for rendering. However, as
for dynamic/hybrid layout, we need to resolve two challenges:
(1) converting dynamic/hybrid layout to static layout since
we cannot render the corresponding Ul pages accurately with
incomplete layout; (2) filling the dynamic data loading area
with dummy data (i.e, text, image) since we cannot render
the corresponding components that load dynamic data from
remote server which involves backend code. To tackle these
problems, we first statically analyze the activity source code
and identify the logic that is relevant to layout population,
including adding new views and modifying the parameters
of views. We then convert the dynamic layouts in the target
app to static layouts. Moreover, as our approach is based
on static analysis, we cannot obtain the real image which
is loaded dynamically such as ListView and Gridview.
Instead of keeping that position plain, we fill in that position
with dummy images so that users can directly discriminate
it from the plain background. Otherwise, the image position
may be preempted by other components of the same page.
We associate the dummy data with the identified adapters
in Algorithm 1 to display data in different styles. With the
translated static layouts and dummy dynamic data, we compile
them into an apk to render UI pages.

Algorithm 2 details the UI page rendering process. It takes
as input the activity transition graph (atg*), adapter mapping
relations (adapter), layout type (layout_type), and outputs
the rendered UI pages. We first extract all the activities and
fragments from atg* since we need to render both activity Uls
and fragment Uls to make it closer to the real Uls. For each
activity/fragment (act), if act uses the static layout, we directly
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Algorithm 2: UI Page Rendering

Input: atg™: the transitions that contain activities and fragments,
adapters, layout_type

Output: pages: Ul pages

act_frag < getActivityAndFragment(atg™)

foreach act € act_frag do

layout <— copy(act.xml)

if layout_type # “static” then

par_layout < getParentLayout(act)

methods < getAllMethods(act)

foreach m € methods do

if m # “onCreate” then

| continue

10
11

compt, attr <— DataFlowAnalysis(m)
par_layout.add(compt)
// add corresponding attributes
if isMethod(attr) then
| compt.add(DataFlowAnalysis (attr))

else

I

| break

12
13

14
15
16

element < getElementByName(attr)
compt.add(element)

17

18
19

act_layout.add(par_layout)
L saveLayout(act_layout)

foreach adapter € adapters do

activity < match_activity(adapter)

modi fy_layoutFile(activity, adapter.type)
23 apk < bulidApk(act_frag)

24 pages < getScreenshot(apk)
25 return pages

20
21
22

make a copy of the corresponding layout file for further
rendering or modification (line 3). However, if the app uses dy-
namic/hybrid layout, we aim to add the dynamic components
together with their attributions to the corresponding parent
layout. Specifically, we first extract and pinpoint the parent
layout (e.g., LinearLayout) (line 8). We then traverse each
method (m) to identify the dynamic component compt (e.g.,
EditText, TextView) and the corresponding attributes attr
(e.g., text, height, width) by keywords matching (i.e., inflate
and addview) and forward analyzing the data flow of view-
related variables in onCreate (). We then add compt to the
corresponding parent layout (lines 7-11). As for the attribute, if
it is obtained by invoking another method, we leverage data-
flow analysis to reach the definition of the attribution, and
attach it to the corresponding component (lines 12-13). Oth-
erwise, we identify the corresponding element in the resource
files by the attribute name via getElementByName (), and
also attach it to compt (lines 15-16). After the modification to
the parent layout of the dynamic components, we attach the
new par_layout to act_layout and save it as layout format
for further rendering (lines 18-19). Take Fig. 2 as an example,
our method is able to translate the dynamic/hybrid layouts to
static layouts (i.e., XML format).

In addition, as for data display using adapters, we match
each adapter to the activity and modify the correspond-
ing layout by embedding the view types, e.g., ListView,
RecyclerView (lines 20-22) as well as dummy data. We
finally get a view tree and ensure the corresponding attributes
are added from the source code. At last, we build an apk to
render all the activities and fragments, and take screenshots
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Fig. 8: Workflow of semantic name inferring
for each UI (lines 23-24) in a real app.

C. Semantic Name Inferring

In Android app development, activity names of apps are
recommended to contain semantic meanings and end with “Ac-
tivity” [8], thus we assume that the defined activity names by
developers have basic semantic meanings of the corresponding
functionality. To verify this assumption, we randomly down-
load 1,000 apps from F-Droid [15], extract all the activity
names from each app, and finally get 6,767 activity names.
We manually investigate the activity names and observe that
most of activity names have semantic meanings. However,
Android obfuscation techniques are often used in Google Play
apps to protect their security [49]. The activity names will be
translated to simple words like “a,” “b,” and “c,” totally losing
their practical semantic meanings. Those obfuscated names
significantly hinder users’ understanding of our storyboard.
To tackle this problem, we propose to automatically infer the
semantic names for obfuscated activities by comparing the
layout hierarchy (i.e., ViewGroup and View) with those of the
existing activities since activity layout files are not obfuscated
in apps. In this paper, we consider the activity names whose
length is less than three letters as obfuscated ones. To infer
the semantic names for obfuscated activities, we aim to learn
from the activity names of open source apps.

To achieve this, as shown in Fig. 8 (a), we crawl all the apps
on F-Droid (4,426 in total) and build a large database based
on the layout hierarchies of the apps for similarity comparing.
A layout hierarchy is a layout tree (i.e., Fig.8 (b)) based on
the XML layout code. The root node of the tree is a type of
ViewGroup, and the other ViewGroups and types of Views
are the child nodes added to the root node. We finally get
13,792 activities with their layout hierarchies. Given the XML
file (layout file) and XML name of the obfuscated activity, we
infer its semantic name by the following three steps: (1) layout
hierarchy extraction, which extracts the layout tree (7") from
the XML file; (2) similarity comparison, which computes the
similarity between 7" and the trees in our database by lever-
aging the tree edit distance (TED) algorithm [70], which is
defined as the minimum-cost sequence of node edit operations
that transform one tree into another. According to a pilot study
of 100 randomly selected tree pairs, we define a threshold in
TED as 5 and filter the activity names whose TED are less
than 5 as candidates. (3) ranking and matching, which infers
the activity name from the candidates based on the frequency
of each activity name and the corresponding layout names
(XML file names). Specifically, we rank the activity names
based on their frequency, split the camel-case layout name
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into multiple single words with the regular expression [48],
filter out the general words such as “activity,” “layout,” and
compare it with those in the database by keyword matching.
The most matched activity name will be used to rename the
obfuscated activity name. However, if the layout name is not
matched with any names of the candidates, we rename it with
the top frequent name. Note that although the layout names are
not obfuscated, it is ineffective if we only use them to infer the
semantic names since activities using dynamic layouts have no
static layouts, thus have no layout names.

V. IMPLEMENTATION

We implement STORYDROID as an automated tool, which
is written in 3K lines of Java code, and 2K lines of Python
code. STORYDROID is built on top of several off-the-shelf
tools: I1C3, 1aDX [14], and Soot [28]. We use SOOT to extract
inputs of UI page rendering, and get the call graphs from
apks. Activity transition extraction is built on IC3 to obtain a
comparatively complete ATG. jaDX is used to decompile the
apk to the source code for Android apps. We also use JADX
to extract XML layout code from each apk, which will not be
affected by obfuscation, thus will not affect the semantic name
inferring method. We use data-driven document (D3) [13] to
visualize STORYDROID’s results, which provides a visualized
technique based on data in HTML, JavaScript, and CSS.
The visualization [25] contains 4 parts: (1) ATG with activity
names and corresponding UI pages; (2) The layout code of
each UI page; (3) The functional code of each activity; and
(4) the method call relations within each activity.

VI. EFFECTIVENESS EVALUATION

In this section, we evaluate the effectiveness of STORYDROID
based on the following three research questions:
RQ1: Can STORYDROID extract a more complete ATG for an
app, and achieve better activity coverage than the dynamic
testing tool (i.e., STOAT)?
RQ2: Can StoryDRrOID render UI pages with high similarity
compared with the real screenshots?
RQ3: Can StorYDROID infer accurate semantic names for
obfuscated activities?

A. Experimental Setup

To investigate the capability of handling fragments and
inner classes, we self-developed 10 apps® as our ground-
truth benchmark, which cover different features (i.e., activity,
fragment, and inner class) we claim to resolve. This is the only
way to exactly know all the transitions even in fragments or
inner classes, and this way is widely used in the literature [57].
We follow the features below to generate the apps: (1) apps
with transitions only in activities; apps with transitions only
in inner classes; apps with transitions only in fragments;
apps with transitions in both activities and inner classes;
apps with transitions in both activities and fragments; (2) we
developed 2 apps with 7-10 activities under each rule. We
apply both IC3 and STorYDROID on the 10 apps and extract

3The 10 apps are available on https://sites.google.com/view/storydroid/
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TABLE I: Capability of handling fragments and inner classes.
(“~”: IC3 cannot handle)

App ID Featur #Transition  #ldentified #Identified
i e Pairs by IC3 by StoryDoid
! ivi 14 14 4
5 Activity 3 m 7
3 13 N 3
7 Inner Class 3 - 3
5 . 13 - 3
% Frag = - 3
7 Activity 13 1 3
8 Inner Class 13 1 3
9 Activity 10 i 0
10 Fr t 10 1 10

the transition pairs respectively. Moreover, since the stake-
holders are more concerned about popular competitive apps
which have already dominated the market. To mimic the real
scenario, we randomly download 50 apps from GooglePlay
Store with 10M+ installations to demonstrate the effectiveness
of STORYDROID on real-world apps. We compare the number
of transition pairs identified by IC3 and STORYDROID. We
also use these 100 apps to evaluate the activity coverage
of STorRYDROID and the state-of-the-art dynamic testing tool,
STOAT [67], which has been demonstrated to be more effective
on app exploration than other tools such as MONKEY [17] and
SAPIENZ [58]. Specifically, we collect all the activities defined
in each app from AndroidManifest.xml, and compare the
number of the rendered activities by STOrRYDROID and the
explored activities by STOAT.

For RQ2, we evaluate the similarity of our statically ren-
dered UI pages with the real Ul which are dynamically
rendered Ul by StoATr based on the 100 apps [40]. STOAT
is configured with default settings and given 30 minutes to
test each app in order to collect the explored activities. We
further apply SToAT on each app to collect the screenshots
of each activity. Since STOAT may only explore part of the
activities of an app within the given time, we only compare
the similarity of the explored activities with the corresponding
rendered activities by STORYDROID for a fair comparison.

For RQ3, to demonstrate the accuracy of inferring semantic
names, we randomly select 100 activity names with semantic
meanings from the extracted 6,767 activity names in Sec-
tion IV-C as the ground truth. We collect the corresponding
layout files from source files, and further utilize our method
based on TED [70] to obtain the semantic names for the 100
activities based on our collection of layout trees (i.e., 13,792
layout files). We then compare the results with the original
activity names to evaluate the accuracy of our approach i.e.,
the proportion of semantic names that are correctly inferred.

B. Experimental Results

1) RQI: Table I shows the results of the capability
evaluation of handling fragments and inner classes on the
10 ground-truth benchmark apps. We can see that IC3
is able to extract transitions in activities, however, is
weak in fragments and inner classes. In contrast, STO-
RYDROID can extract transitions with respect to all these
features. Since we extract transitions by using particular
APIs (i.e., StartActivity, StartActivityForReulst,
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Fig. 9: Comparison of transitions pairs and activity coverage

StrartActivityIfNeeded) that start new activities with
data-flow analysis, the extracted transitions are more accurate.
The results demonstrate the effectiveness of STORYDROID on
extracting activity transitions, especially in fragments and
inner classes. Moreover, we also evaluate the effectiveness of
STORYDROID on real apps compared with IC3 in Fig 9 (a). It
shows that STORYDROID extracts nearly 2 times more activity
transitions and is more effective than 1C3 for both open-source
apps and closed-source apps.

Besides the limitations of inner classes and fragments, tran-
sitions in Android system event callbacks are lost in IC3 ac-
cording to our observation. For example, (1) PodListen [26]
is a podcast player, and there exists an activity transition in
the callback method (DownloadReceiver.onReceive ()),
which is called when the BroadcastReceiver is receiv-
ing an Intent broadcast. However, IC3 fails to extract the
activity transition. (2) cSipSimple [12] is an online voice
communication app, in which the system callback method
(SipService.adjustVolume ()) starts a new activity, but
IC3 fails to identify the transition.

Fig. 9 (b) depicts the activity coverage results. On average,
STORYDROID outperforms STOAT in terms of activity coverage,
achieving 87% and 74% coverage on open-source apps and
closed-source apps, respectively. In addition, STORYDROID
costs much less time (i.e., within 3 minutes on average) to
extract and render the activities than STOAT (i.e., 30 minutes).
STORYDROID does not cover all the activities for some apps
due to the following reasons: (1) the limitation of reverse
engineering techniques, some classes and methods cannot be
decompiled from the apks, causing failure in the extraction of
activity transition and coverage. That situation is more severe
in closed source apps due to packing [9] and obfuscation. In
our evaluated apps, PodListen is the only project in which
activity coverage of STORYDROID is lower than that of STOAT
due to decompiling failure of SubscribeDialog fragment.
(2) Another reason is the dead activities (no transitions), such
as unused legacy code and testing code in apps.

We further investigate the reasons why STOAT achieves low
activity coverage: (1) Login requirement. For example, STOAT
fails to explore santander which is a banking app requiring
login using password or fingerprint. (2) Lack of specific events.
For example, Open Training is a fitness-training app, which
can create fitness plans by swiping across the screen. However,
StoaT does not support such events, resulting low coverage.

2) RQ2: As for the similarity of the rendered images
compared with the ones obtained by STOAT, we use two
widely used image similarity metrics [3] (i.e., mean absolute

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:28:07 UTC from IEEE Xplore. Restrictions apply.



(a) Real page (b) Our rendered

(c) Real page (d) Our rendered
Fig. 10: Comparison of real pages and rendered pages

TABLE 1II: Partial results of inferring semantic name for
obfuscated activities

GroundTruth Rank in Corresponding Inferred by
Act. Name Candidates XML Name STORYDROID
AboutAct. 1 about AboutAct.

HelpAct. 2 activity_help HelpAct.
PersonallnfoAct. 3 content_extended_title WizardAct.
LoginAct. 3 login LoginAct.

ContactListAct. 1 contact_list ContactListAct.
SearchAct. 4 grid_base Searcher
SettingAct. 1 setting_container SettingAct.
ShareAct. 1 activity_share ShareAct.
SplashAct. 3 activity_splash SplashAct.

TrackListAct. 1 list_view TrackListAct.

error (MAE) and mean squared error (MSE)) to measure
the similarity pixel by pixel. MAE measures the average
magnitude of differences between the prediction and the actual
value and MSE measures the average squared differences
between them. On average, our rendered images achieve 84%
and 88% similarity in terms of MAE and MSE, respectively.
The reasons for the inconsistencies are explained as follows.
(1) Some data in components are dynamically loaded from
web servers or local storage (e.g., Preference and SD card),
such as the list data of ListView, the text data of TextView,
and the image background of Imageview. The differences
are depicted in Fig. 10 (a), (b). (2) Some components (e.g.,
Button) will change their color or visibility after users type
some data. For example, as shown in Fig. 10 (c), the color
of the button changes when users input the “Nickname”.
STorRYDROID renders the initial state of the activity, thus
reducing the similarity of the two UI pages, which however
does not affect the understanding of the app functionality.

3) RO3: 92 out of 100 activity names are inferred correctly
based on our approach, and the accuracy is 92%. To demon-
strate and explain the inferring results, we randomly select 10
cases listed in Table II. The first column refers to the ground-
truth activity names. According to the results of comparison
with layout trees in our database, we list the ranks of correct
activity names based on the frequency of each name in the
second column. The third column is the corresponding XML
layout names. STORYDROID accurately infers 8 out of the 10
semantic names which are consistent with the ground truth.
For TrackListAct., PersonalInfoAct. and SearchAct.
(highlighted in gray color in Table II), the layout names cannot
be matched with any name of the candidates, so we choose
the name at rank one as the semantic name. Two of them do
not match the ground truth. But note that the performance of
our approach is highly underestimated, as although some of
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the recommended names from our SToryDRroOID differ from
the ground truth, they actually have similar meanings, such as
SearchAct. and Searcher. In addition, with the expansion
of our database, the accuracy will be also boosted. Overall,
the results show that STOorRYDROID can help infer the semantic
names of obfuscated activities effectively.

Remark: STorRYDROID outperforms IC3 on ATG extraction
and covers 2 times more activities than STOAT with less
time. STORYDROID can render UI pages with high similarity
(84%) to the real ones and accurately (92%) infer the
semantic names for obfuscated activity names.

VII. USEFULNESS EVALUATION

Apart from effectiveness evaluations, we further conduct
a user study to demonstrate the usefulness of STORYDROID.
Our goals are to check: (1) whether STORYDROID can help
explore and understand the functionalities of apps effectively?
(2) whether STorYDROID can help identify the layout code of
the given UI page accurately and effectively?
Dataset of user study. We randomly select 4 apps (i.e.,
Bitcoin, Bankdroid, ConnectBot, Vespucci) with differ-
ent number of activities (12-15 activities) from 2 categories
(i.e., finance, tool), which are hosted on Google Play Store.
Each category contains two apps, and we ask participants to
explore each app to finish the assigned tasks.
Participant recruitment. We recruit 8 people including post-
doc, Ph.D, and master from our university to participate
in the experiment via word-of-mouth. All of the recruited
participants have used Android devices for more than one
year, and participated in Android related research topics. They
never use these apps before. All of them have Android app
development experience and come from different countries,
such as USA, China, European countries (e.g., Spain), and
Singapore. The participants receive a $10 shopping coupon as
a compensation of their time.
Experiment procedures. We installed the 4 apps on an
Android device (Nexus 5 with Android 4.4). The experiment
started with a brief introduction to the tasks. We explained
and went through all the features we want them to use
within the apps and asked each participant to explore the 4
apps separately to finish the tasks below. Note that for each
category, each participant explored one app with STORYDROID,
and the other without STorRYDROID. To avoid potential bias, the
order of app category, and the order of using STORYDROID or
not using are rotated based on the Latin Square [69]. This setup
ensures that each app is explored by multiple participants with
different development experience. We told each participant to
complete two tasks with the given apps: (1) manually explore
as many functionalities of the apps as possible in 10 minutes,
which is far longer than the typical average app session (71.56
seconds) [39], and understand the app functionalities with
STorRYDROID; (2) identify the corresponding layout code for
the given 2 UI pages in 10 minutes. The 2 Ul pages are
implemented by static and dynamic layout types respectively.
After the exploration, participants were asked to rate their
satisfactoriness in exploration and confidence in mapping Ul
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TABLE III: User study results of app exploration. The figure
represents the activity coverage of the 4 apps with manual
exploration. * denotes p < 0.01 and ** denotes p < 0.05.

1.0
=08 1 . Manual Story
o 06| i Metrics Exploration -Droid
&
$oa ij__| = E| + |  Time (min) 52 25*
8 o2l + =| Coverage 40.8% 86.5%"
' Satisfactoriness (1-5) 42 4.4**
0.0 .

2 3 4
App

page and code (on the 5-point likert scale with 1 being least
satisfied or confident and 5 being most satisfied or confident).
All participants carried out experiments independently without
any discussions with each other. After performing all tasks,
they were required to write some comments about our tool.
Experiment results. As displayed in Table III, the average
activity coverage of manual exploration is quite low (i.e.,
40.8%), showing the difficulty in exploring app functionalities
thoroughly by manual exploration. However, the participants’
satisfactoriness of completeness of exploration is high (i.e., 4.2
on average). It indicates that the development teams sometimes
are not aware that they miss many features when exploring
others’ apps. Such blind confidence and neglection may further
negatively influence their strategy or decision in developing
their own apps. Compared with manual exploration, STO-
RYDROID achieves 2 times more activity coverage with less
time cost (2.5 minutes on average) to help understand the
app functionalities. According to the participates’ feedback,
the average satisfactoriness of STORYDROID is 4.4, which
represents the usefulness of helping participants explore and
understand app functionalities. Table IV shows the time cost
and confidence of mapping UI page to layout code with
and without STORYDROID. All the participants spend over 8
minutes to map the UI pages to the corresponding layout
code, among which 4 pages are not mapped successfully
within 10 minutes. In contrast, with the help of STORYDROID,
participants only spent 30 seconds to confirm the mapping
relations between Ul pages and layout code. To understand the
significance of the differences between without STORYDROID
and with STOrRYDROID, we carry out the Mann-Whitney U
test [21], which is designed for small samples. The results in
Table III and Table IV are both significant with p-value <
0.01 or p-value < 0.05.

We analyze the comments from the participants, and find
that they mainly focus on two aspects: (1) It is better to
add activity transition methods/events on the edges, such as
clicking “login™; (2) If the transition graph is too complex,
STORYDROID needs to provide a better strategy to visualize
it.

1

VIII. DISCUSSION
A. Future Applications Based on STORYDROID

Apart from the above fundamental usefulness (i.e., explo-
ration of app functionalities), we discuss additional follow-up
applications based on the outputs of STORYDROID.
Recommendation of UI design and code. Developing the
GUI of a mobile application involves two steps, i.e., UI design
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TABLE IV: User study results of Ul page and layout code
mapping. * denotes p < 0.01 and ** denotes p < 0.05.

Metrics Without STORYDROID With STORYDROID
Time Cost (min) 8.5 0.5*
Confidence (1-5) 45 5.0%*

and implementation. Designing a Ul focuses on proper user
interaction and visual effects, while implementing a Ul focuses
on making the UI work as designed with proper layouts and
widgets of a GUI framework. Our STORYDROID can assist both
UI designers and developers by building a large-scale database
of app storyboard. Such a database bridges the gap across the
abstract activities (text), UI pages (image) and detailed layout
code (i.e., activity—UI page—layout code) so that they can be
searched as a whole. Due to that mapping, UI/UX designers
can directly use keywords (e.g., “Login” and “Search”) to
search the Ul images by matching the activity name of the Ul
in our database. The searched images can be used for inspiring
their own UI design. The UI developers can also benefit from
searching our database for Ul implementation. Given the Ul
design image from designers, developers can search the similar
Ul in our database by computing image similarity (e.g., MSE
in Section VI-B3). As each UI page in our database is also
associated with corresponding run-time Ul code, developers
can select the most related Ul page in the candidate list and
then customize the UI code for their own need to implement
the given UI design.

Guiding regression testing of apps. Reusing test cases is
useful to improve the efficiency of regression testing for
Android apps [65]. STORYDROID can help guide app regression
testing by identifying the Ul components that have been mod-
ified. Different versions of a single app have many common
functionalities, which means most of Ul pages in the newer
version are the same as the previous version. STORYDROID
stores the mapping relation between Ul page and the cor-
responding layout code, therefore, analyzers can obtain the
modified components by analyzing the differences of layout
code and ATG, and further update the corresponding test cases.
In this scenario, most of the test cases can be reused, and the
modified components can be identified effectively to guide test
case update for regression testing.

B. Limitations

Transition Extraction. The inputs of UI page rendering are
extracted from static analysis based on SooT, but some files
failed to be transformed, and the call graphs can still be
incomplete. As for the closed-source apps, JADX is used to
decompile apk to Java code. However, some Java files failed
to be decompiled, which affects the analysis results of UI page
rendering. But according to our observation, these cases rarely
appear in the real apps. Besides, as the activities spawned
by other components (e.g., Broadcast Receiver) can only be
dynamically loaded, our static-analysis based approach cannot
deal with them.

UI Page Rendering. (1) Some UI pages use self-defined
components by overwriting the method onDraw. For example,
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Kiwix [20] lets users read Wikipedia without Internet con-
nections. It draws the canvas for the UI page dynamically. (2)
Some components are dynamically created from a user-defined
function. For example, BankDroid [10] is a banking client
for the Swedish banks. It invokes CreateFrom() function to
create a component where the parameter is the return value
of another self-defined method. As we cannot get a clue of
what these values are unless we analyze them at runtime, we
use some empty placeholder to take the position so that the
overall layout is the same as the real UI page.

IX. RELATED WORK

Studies for helping Android development. GUI provides
a visual bridge between apps and users through which they
can interact with each other. Developing the GUI of a mobile
app involves two separate but related activities: design the Ul
and implement the UI. To assist UI implementation, Nguyen
and Csallner [61] reverse-engineer the UI screenshots by
image processing techniques. More powerful deep-learning
based algorithms [38, 40, 59] are further proposed to lever-
age the existing big data of Android apps. Retrieval-based
methods [37, 64] are also used to develop the user interfaces.
Reiss [64] parses the sketch into structured queries to search
related Uls of Java-based desktop software in the database.
Different from the UI implementation studies, our study fo-
cuses more on the generation of app storyboard which not only
contains the UI code, but also the transitions among the Uls. In
addition, the UI code generated in prior work [38, 40, 59, 61]
is all static layout, which conflicts with our observation in
Section III that developers often write Java code to dynami-
cally render the Ul In our work, we provide developers with
the original Ul code (no matter static code, dynamic code,
or hybrid) for each screen. Such real code makes developers
more easy to customize the Uls for their own needs. Apart
from the UI implementation, some studies also explore issues
between Ul design and its implementation. Moran et al [60]
check whether the UI implementation violates the original
UI design by comparing the image similarity with computer
vision techniques. They further detect and summarize GUI
changes in evolving mobile apps. They rely on the dynamically
running apps for collecting UI screenshots, and that is time-
consuming and leads to low coverage of the app. In contrast,
our method can extract most Ul pages of the app statically, so
it can complement with these studies for related tasks.
GUIFECTCH [37] customizes Reiss’s method [64] into An-
droid app UI search by considering the transitions between
Uls. It can also extract Ul screenshots with corresponding
transitions, but our work is different from theirs in two as-
pects. First, their model can only deal with open-source apps,
while ours can also reverse-engineer the closed-source apps,
hence leading to more generality and flexibility. On the other
hand, GUIFECTCH is much more heavy-weight than our static-
analysis based approach, as it relies on both static analysis
for Ul code extraction and dynamic analysis for transition
extraction. In addition, dynamically running the app usually
cannot cover all screens, leading to the loss of information.
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Studies for helping app understanding. The process of
reverse engineering of Android apps is that researchers rely
on the state-of-the-art tools (e.g., APKTOOL [29], ANDRO-
GUARD [27], DEX2JAR [30], Soor [28]) for decompiling an APK
to intermediate language (e.g., smali, jimple) or Java code.
Android reverse engineering is usually used to understand and
analyze apps [1]. It also can be used to extract features for
Android malware detection [46]. However, reverse engineering
only has the basic functionality for code review. Different
from reverse engineering, our work provides a storyboard of
each app to show the basic functionalities and other useful
mappings between the Ul page and the corresponding layout
code, which helps different parties (e.g., PM, UI/UX designer,
developer) improve their work efficiency in the real world.

Studies for analyzing Android apps. Many static analysis
techniques [35, 36, 42, 43, 50, 51, 56, 62, 63] have been
proposed for Android apps. A3E provides two strategies,
targeted and depth-first exploration, for systematic testing of
Android apps [36]. It also extracts static activity transition
graphs for automatically generated test cases. Apart from
the target of Android testing, we extract activity transition
graphs to identify and systematically explore the storyboard
of Android apps. Epicc is the first work to extract component
communication [63], and it determines most Intent attributes
to component matching. ICC [62] significantly outperforms
Epicc on the extraction ability of inter-component communi-
cation by utilizing the solver for MVC problems based on the
proposed COAL lauguage. FLOWDROID [35] and ICCTA [56]
extract call graphs based on SooT for data-flow analysis for de-
tecting data leakage and malicious behaviors [44-47, 52, 68].

X. CONCLUSION AND FUTURE WORK

In this paper, we propose STORYDROID, a system to return
visualized storyboard of Android apps by extracting relatively
complete ATG, rendering the UI pages statically, and inferring
semantic name for obfuscated activities. Such a storyboard
benefits different roles (i.e., PMs, Ul designers, and develop-
ers) in the app development process. The extensive experiment
and user study demonstrate the effectiveness and usefulness
of STorYDROID. Based on the outputs of STORYDROID, we
are able to construct a large-scale database of storyboard to
bridge the gap across app activities (text), UI pages (image),
and implementation code. Such a comprehensive database can
enable many potential applications such as recommending Ul
pages to designers and implementation code for developers.
In the future, we will explore these potential applications, and
also extend our approach into other platforms such as I0S
apps and desktop software for more general usage.
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